Recently, automated co-design of machine learning (ML) models and accelerator architectures has attracted significant attention from both the industry and academia. However, most co-design frameworks either explore a limited search space or employ suboptimal exploration techniques for simultaneous design decision investigations of the ML model and the accelerator. Furthermore, training the ML model and simulating the accelerator performance is computationally expensive. To address these limitations, this work proposes a novel neural architecture and hardware accelerator co-design framework, called CODEBench. It is composed of two new benchmarking sub-frameworks, CNNBench and AccelBench, which explore expanded design spaces of convolutional neural networks (CNNs) and CNN accelerators. CNNBench leverages an advanced search technique, BOSHNAS, to efficiently train a neural heteroscedastic surrogate model to converge to an optimal CNN architecture by employing second-order gradients. AccelBench performs cycle-accurate simulations for a diverse set of accelerator architectures in a vast design space. With the proposed co-design method, called BOSHCODE, our best CNN-accelerator pair achieves 1.4% higher accuracy on the CIFAR-10 dataset compared to the state-of-the-art pair, while enabling 59.1% lower latency and 60.8% lower energy consumption. On the ImageNet dataset, it achieves 3.7% higher Top1 accuracy at 43.8% lower latency and 11.2% lower energy consumption. CODEBench outperforms the state-of-the-art framework, i.e., Auto-NBA, by achieving 1.5% higher accuracy and 34.7x higher throughput, while enabling 11.0x lower energy-delay product (EDP) and 4.0x lower chip area on CIFAR-10.
translated by 谷歌翻译
When trained on language data, do transformers learn some arbitrary computation that utilizes the full capacity of the architecture or do they learn a simpler, tree-like computation, hypothesized to underlie compositional meaning systems like human languages? There is an apparent tension between compositional accounts of human language understanding, which are based on a restricted bottom-up computational process, and the enormous success of neural models like transformers, which can route information arbitrarily between different parts of their input. One possibility is that these models, while extremely flexible in principle, in practice learn to interpret language hierarchically, ultimately building sentence representations close to those predictable by a bottom-up, tree-structured model. To evaluate this possibility, we describe an unsupervised and parameter-free method to \emph{functionally project} the behavior of any transformer into the space of tree-structured networks. Given an input sentence, we produce a binary tree that approximates the transformer's representation-building process and a score that captures how "tree-like" the transformer's behavior is on the input. While calculation of this score does not require training any additional models, it provably upper-bounds the fit between a transformer and any tree-structured approximation. Using this method, we show that transformers for three different tasks become more tree-like over the course of training, in some cases unsupervisedly recovering the same trees as supervised parsers. These trees, in turn, are predictive of model behavior, with more tree-like models generalizing better on tests of compositional generalization.
translated by 谷歌翻译
Running machine learning inference on tiny devices, known as TinyML, is an emerging research area. This task requires generating inference code that uses memory frugally, a task that standard ML frameworks are ill-suited for. A deployment framework for TinyML must be a) parametric in the number representation to take advantage of the emerging representations like posits, b) carefully assign high-precision to a few tensors so that most tensors can be kept in low-precision while still maintaining model accuracy, and c) avoid memory fragmentation. We describe MinUn, the first TinyML framework that holistically addresses these issues to generate efficient code for ARM microcontrollers (e.g., Arduino Uno, Due and STM32H747) that outperforms the prior TinyML frameworks.
translated by 谷歌翻译
在边缘计算中,必须根据用户移动性迁移用户的服务配置文件。已经提出了强化学习(RL)框架。然而,这些框架并不考虑偶尔的服务器故障,尽管很少会阻止Edge Computing用户的延迟敏感应用程序(例如自动驾驶和实时障碍物检测)的平稳和安全功能,因为用户的计算作业不再是完全的。由于这些故障的发生率很低,因此,RL算法本质上很难为数据驱动的算法学习针对典型事件和罕见事件方案的最佳服务迁移解决方案。因此,我们引入了罕见的事件自适应弹性框架火,该框架将重要性采样集成到加强学习中以放置备份服务。我们以与其对价值函数的贡献成正比的稀有事件进行采样,以学习最佳政策。我们的框架平衡了服务迁移和迁移成本之间的迁移权衡,与失败的成本以及备份放置和移民的成本。我们提出了一种基于重要性抽样的Q-学习算法,并证明其界限和收敛到最佳性。随后,我们提出了新的资格轨迹,我们的算法的线性函数近似和深Q学习版本,以确保其扩展到现实世界情景。我们扩展框架,以适应具有不同风险承受失败的用户。最后,我们使用痕量驱动的实验表明我们的算法在发生故障时会降低成本。
translated by 谷歌翻译
我们介绍了Encoder-Forecaster卷积的长短短期记忆(LSTM)深度学习模型,为微软天气的运营降水Newcasting产品提供动力。该模型作为输入一系列天气雷达马赛克,并确定在最多6小时内的铅倍时确定未来雷达反射率。通过沿着特征维度堆叠大型输入接收领域,并通过从基于物理的高分辨率快速刷新(HRRR)模型的预测,通过预测来调节模型的预测,我们能够在多个度量标准上以20-25%的光流和HRRR基线优于光流量和HRRR基线平均在所有交货时间上。
translated by 谷歌翻译
Embedding words in vector space is a fundamental first step in state-of-the-art natural language processing (NLP). Typical NLP solutions employ pre-defined vector representations to improve generalization by co-locating similar words in vector space. For instance, Word2Vec is a self-supervised predictive model that captures the context of words using a neural network. Similarly, GLoVe is a popular unsupervised model incorporating corpus-wide word co-occurrence statistics. Such word embedding has significantly boosted important NLP tasks, including sentiment analysis, document classification, and machine translation. However, the embeddings are dense floating-point vectors, making them expensive to compute and difficult to interpret. In this paper, we instead propose to represent the semantics of words with a few defining words that are related using propositional logic. To produce such logical embeddings, we introduce a Tsetlin Machine-based autoencoder that learns logical clauses self-supervised. The clauses consist of contextual words like "black," "cup," and "hot" to define other words like "coffee," thus being human-understandable. We evaluate our embedding approach on several intrinsic and extrinsic benchmarks, outperforming GLoVe on six classification tasks. Furthermore, we investigate the interpretability of our embedding using the logical representations acquired during training. We also visualize word clusters in vector space, demonstrating how our logical embedding co-locate similar words.
translated by 谷歌翻译
Large training data and expensive model tweaking are standard features of deep learning for images. As a result, data owners often utilize cloud resources to develop large-scale complex models, which raises privacy concerns. Existing solutions are either too expensive to be practical or do not sufficiently protect the confidentiality of data and models. In this paper, we study and compare novel \emph{image disguising} mechanisms, DisguisedNets and InstaHide, aiming to achieve a better trade-off among the level of protection for outsourced DNN model training, the expenses, and the utility of data. DisguisedNets are novel combinations of image blocktization, block-level random permutation, and two block-level secure transformations: random multidimensional projection (RMT) and AES pixel-level encryption (AES). InstaHide is an image mixup and random pixel flipping technique \cite{huang20}. We have analyzed and evaluated them under a multi-level threat model. RMT provides a better security guarantee than InstaHide, under the Level-1 adversarial knowledge with well-preserved model quality. In contrast, AES provides a security guarantee under the Level-2 adversarial knowledge, but it may affect model quality more. The unique features of image disguising also help us to protect models from model-targeted attacks. We have done an extensive experimental evaluation to understand how these methods work in different settings for different datasets.
translated by 谷歌翻译
Recent advances in deep learning have enabled us to address the curse of dimensionality (COD) by solving problems in higher dimensions. A subset of such approaches of addressing the COD has led us to solving high-dimensional PDEs. This has resulted in opening doors to solving a variety of real-world problems ranging from mathematical finance to stochastic control for industrial applications. Although feasible, these deep learning methods are still constrained by training time and memory. Tackling these shortcomings, Tensor Neural Networks (TNN) demonstrate that they can provide significant parameter savings while attaining the same accuracy as compared to the classical Dense Neural Network (DNN). In addition, we also show how TNN can be trained faster than DNN for the same accuracy. Besides TNN, we also introduce Tensor Network Initializer (TNN Init), a weight initialization scheme that leads to faster convergence with smaller variance for an equivalent parameter count as compared to a DNN. We benchmark TNN and TNN Init by applying them to solve the parabolic PDE associated with the Heston model, which is widely used in financial pricing theory.
translated by 谷歌翻译
When testing conditions differ from those represented in training data, so-called out-of-distribution (OOD) inputs can mar the reliability of black-box learned components in the modern robot autonomy stack. Therefore, coping with OOD data is an important challenge on the path towards trustworthy learning-enabled open-world autonomy. In this paper, we aim to demystify the topic of OOD data and its associated challenges in the context of data-driven robotic systems, drawing connections to emerging paradigms in the ML community that study the effect of OOD data on learned models in isolation. We argue that as roboticists, we should reason about the overall system-level competence of a robot as it performs tasks in OOD conditions. We highlight key research questions around this system-level view of OOD problems to guide future research toward safe and reliable learning-enabled autonomy.
translated by 谷歌翻译
Tsetlin Machine (TM) has been gaining popularity as an inherently interpretable machine leaning method that is able to achieve promising performance with low computational complexity on a variety of applications. The interpretability and the low computational complexity of the TM are inherited from the Boolean expressions for representing various sub-patterns. Although possessing favorable properties, TM has not been the go-to method for AI applications, mainly due to its conceptual and theoretical differences compared with perceptrons and neural networks, which are more widely known and well understood. In this paper, we provide detailed insights for the operational concept of the TM, and try to bridge the gap in the theoretical understanding between the perceptron and the TM. More specifically, we study the operational concept of the TM following the analytical structure of perceptrons, showing the resemblance between the perceptrons and the TM. Through the analysis, we indicated that the TM's weight update can be considered as a special case of the gradient weight update. We also perform an empirical analysis of TM by showing the flexibility in determining the clause length, visualization of decision boundaries and obtaining interpretable boolean expressions from TM. In addition, we also discuss the advantages of TM in terms of its structure and its ability to solve more complex problems.
translated by 谷歌翻译